УДК 681.32

Особенности формализации транзисторных схем логических элементов

С. Ф. Тюрин

Пермский государственный национальный исследовательский университет Россия, 614990, г. Пермь, ул. Букирева, 15 tyurinsergfeo@yandex.ru; +7-952-32-02-510

КМОП-схемы (комплементарная структура металл-оксид-полупроводник; англ. CMOS, complementary metal-oxide-semiconductor) как правило — последовательно-параллельные и описываются дизьюнктивной нормальной формой (ДНФ) реализуемых ими логических функций. С целью упрощения схемы применяют скобочную форму. Эти структуры могут быть описаны соответствующей цепочкой символов (словом). Однако в ряде случаев используют схемы, которые не могут быть описаны цепочками. Кроме того, иногда в схему вводят так называемые мостики-транзисторы. В статье анализируются особенности логического описания таких схем и предпринимается попытка их формализации.

Ключевые слова: логическая функция; ДНФ; КМОП-схема; логический элемент; транзистор.

DOI: 10.17072/1993-0550-2018-3-129-133

Введение

Реализация логики в виде КМОП-схемы [1] предполагает представление логической функции в виде двух подсхем — подсхемы подключения "+" источника питания и подсхемы подключения шины "ноль вольт" [2]. Эти два представления логической функции должны быть ортогональны, т. е. каждое представление является отрицанием другого. Например, самая простая функция — инверсия (отрицание) сигнала на входе х:

$$f(x) = \overline{x}.\tag{1}$$

Эта функция и является функцией подключения "+":

$$f(x)_{+} = \overline{x}. \tag{2}$$

А функция подключения шины "ноль вольт" является ее отрицанием:

$$f(x)_0 = x. (3)$$

Получаем условную КМОП-схему, где входная переменная х подается сразу на два транзистора (на верхний и на нижний), см. рис. 1.

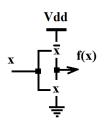


Рис. 1. Условная схема КМОП-инвертора

Таким образом, если х=0, то активируется верхний транзистор р-проводимости х и ток течет от "+" (Vdd) на выход f(x). Если x=1, активируется нижний транзистор ппроводимости x и ток течет от выхода f(x) на шину "ноль вольт". Ситуация, когда не активна ни та, ни другая подсхема, недопустима это приводит к так называемому третьему состоянию (ни ноль, ни единица) или высокому импедансу на выходе. Кроме того, применяется только в элементах с тремя состояниями на выходе. Они используются как шинные формирователи в микропроцессорных системах. Другая проблемная ситуация, когда активны обе подсхемы, что приводит к КЗ – короткому замыканию.

[©] Тюрин С. Ф., 2018

Еще более упрощенная схема реализации функции 2И-НЕ имеет вид (рис. 2):



Рис. 2. Условная схема элемента 2И-НЕ

Таким образом, реализуется логическая функция

$$f(ab)_{+} = \overline{ab} = \overline{a} \vee \overline{b}, \tag{4}$$

(параллельное соединение транзисторов \overline{a} и \overline{b}) и ортогональная ей функция с последовательным соединением транзисторов a и b:

$$f(ab)_0 = \overline{ab} = ab. \tag{5}$$

Очевидно, что в случае 2ИЛИ-НЕ все будет наоборот (см. рис. 3).

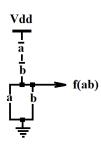


Рис. 3. Условная схема элемента 2ИЛИ-НЕ

$$f(ab) = \overline{a \vee b} = \overline{ab}.$$
 (6)

Как строится последовательнопараллельная схема в случае, если в функции переменные без инверсии? Рассмотрим классический пример двоичного полного сумматора для двух бит a, b и входного переноса c.

1. Реализация двоичного сумматора

Сумматор реализует две функции, сумму:

$$s(abc) = \overline{abc} \vee \overline{abc} \vee \overline{abc} \vee abc, \qquad (7)$$

и перенос в следующий разряд

$$p(abc) = ab \lor bc \lor ac. \tag{8}$$

Начнем с переноса (8). Для упрощения будем пока рассматривать только верхнюю подсхему. Поскольку в функции (8) нет ни

одной переменной с инверсией, обычно реализуют инверсную функцию, а потом используют инвертор (1):

$$\overline{p}(abc) = \overline{ab \lor bc \lor ac} =
= (\overline{a} \lor \overline{b})(\overline{b} \lor \overline{c})(\overline{a} \lor \overline{c}) =
= (\overline{b} \lor \overline{ac})(\overline{a} \lor \overline{c}) = \overline{ab} \lor \overline{bc} \lor \overline{ac}.$$
(9)

Заметим, что такой результат (инверсия равна той же функции, но все переменные проинверсированы) объясняется самодвойственностью (8).

Таким образом, получаем:

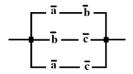


Рис. 4. Условная схема реализации инверсии переноса

Реализация рис. 4 дает сложность 6. Легко видеть, что двойственная схема имеет вид

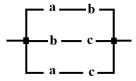


Рис. 5. Двойственная схема реализации инверсии переноса

Таким образом, реализация (рис. 4, 5) дает суммарную сложность 12 (транзисторов). Переход к скобочной форме позволяет сэкономить два транзистора:

$$\overline{p(abc)} = \overline{b(a \lor c)} \lor \overline{ac}.$$
 (10)

Получаем реализацию:

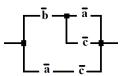


Рис. 6. Условная схема реализации инверсии переноса по скобочной форме логической функции

Сложнее с функцией суммы. Если мы имеем так называемые парафазные входы [1], то есть помимо переменной X есть еще ее инверсия NX, то требуется 12 транзисторов в одной части КМОП подсхемы и 12 в другой, всего 24 (помимо 3 инверторов).

С учетом того, что для реализации переноса нужно 12 транзисторов (10 – схема рис. 6 и 2 – инвертор), получаем всего 36. И это на один разряд! А их в настоящее время нужно не менее 64.

В работе [1] предложена вот такая подсхема:

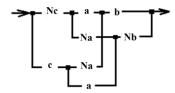


Рис. 7. Условная схема элемента реализации суммы в виде последовательно-параллельной структуры с "переплетением"

Такая реализация имеет сложность 8+8=16. Существенное снижение сложности! Обратим внимание на ортогональные участки схемы (a, Na), (b, Nb), (c, Nc). То есть, всегда активирован только один из альтернативных путей! Однако в этом случае скобочная форма не позволяет описать структуру схемы. Представим функцию s(a, Na, b, Nb, c, Nc) (7) в виде структуры с разрывом:

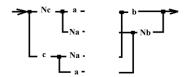


Рис. 8. Разрыв структуры с "переплетением"

Предложим описание схемы рис. 8 в виде двух деревьев с разрывом ... и корнями • по аналогии с [3, 4]:

$$\begin{array}{ccc}
 & \stackrel{a \to 1}{Nc} & \\
 & Nc & \\
 & Na \to 2 & (1)b & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

Стрелки с номерами описывают соответствующие соединения. Проверим реализацию суммы. Действительно,

$$s(a, Na, b, Nb, c, Nc) = \\ = \overline{abc} \lor abc \lor a\overline{bc} \lor \overline{abc} = \\ = (Nc) ab \lor (Nc)(Na)(Nb) \lor c(Na)(b) \lor c a(Nb).$$
(12)

Функция суммы (12) тоже самодвойственна, поэтому структура второй подсхемы повторяет рис. 7.

2. Универсальный элемент ПЛИС

Описанные выше схемы реализуют только одну заданную логическую функцию. Программируемые логические интегральные схемы (ПЛИС) типа FPGA (field-programmable gate array) содержат универсальные (настраиваемые на реализацию заданной функции [5], генераторы логических функций) логические элементы LUT (Look-Up Table), которые представляют собой деревья так называемых передающих МОП-транзисторов (это уже не комплементарные схемы, хотя в них используются, например, КМОП-инверторы). Так LUT на три переменных *а,b,c* можно представить в виде дерева:

$$d_{0} \rightarrow \overline{a} \rightarrow \overline{b}$$

$$d_{1} \rightarrow a \rightarrow \overline{c}$$

$$d_{2} \rightarrow \overline{a} \rightarrow \overline{c}$$

$$d_{3} \rightarrow a \rightarrow \overline{b}$$

$$d_{4} \rightarrow \overline{a} \rightarrow \overline{b}$$

$$d_{5} \rightarrow a \rightarrow \overline{b}$$

$$d_{6} \rightarrow \overline{a} \rightarrow \overline{c}$$

$$d_{7} \rightarrow a \rightarrow \overline{b}$$

$$d_{1} \rightarrow a \rightarrow \overline{c}$$

$$d_{2} \rightarrow a \rightarrow \overline{c}$$

$$d_{3} \rightarrow a \rightarrow \overline{c}$$

$$d_{4} \rightarrow a \rightarrow \overline{c}$$

$$d_{5} \rightarrow a \rightarrow \overline{c}$$

$$d_{7} \rightarrow a \rightarrow \overline{c}$$

$$d_{7} \rightarrow a \rightarrow \overline{c}$$

$$d_{1} \rightarrow a \rightarrow \overline{c}$$

$$d_{2} \rightarrow a \rightarrow \overline{c}$$

$$d_{3} \rightarrow a \rightarrow \overline{c}$$

$$d_{4} \rightarrow a \rightarrow \overline{c}$$

$$d_{5} \rightarrow a \rightarrow \overline{c}$$

$$d_{7} \rightarrow a \rightarrow \overline{c}$$

В выражении (13) в отличие от (11) номера стрелок не указаны в связи с интуитивно-ясной древовидной структурой элемента (схемы). Настройка на реализацию заданной функции в совершенной дизьюнктивной нормальной форме (СДНФ) осуществляется по входам данных d дерева. В отличие от КМОПсхем здесь нет второй подсхемы, но требование ортогональности трактуется так: в каждый момент времени должна быть активирована одна и только одна ветвь дерева.

3. Мостиковые схемы

Еще одна КМОП-реализация мажоритарной функции-переноса (8) имеет так называемый мостик (рис. 9).

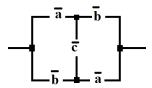


Рис. 9. Условная подсхема реализации инверсии переноса с мостиком

Мостиком называется элемент схемы (транзистор в данном случае), в котором ток может течь в разных направлениях при разных наборах переменных (в отличие от вышерассмотренных схем). Для описания такой структуры используем разложение Шеннона по мостиковому транзистору \overline{c} (рис. 10):

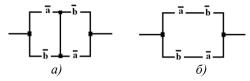


Рис. 10. Разложение Шеннона подсхемы реализации инверсии переноса с мостиком

$$c: a) \ c = 1 \ 6) \ c = 0.$$

Тем не менее, возможно также представление схемы рис. 9 в виде следующего выражения:

$$\overline{p(abc)} = \overline{ab} \vee \overline{bc} \vee \overline{ac} =
= \overline{ab} \vee \overline{ba} \vee \overline{aca} \vee \overline{bcb}.$$
(14)

Выражение (14) описывает все варианты протекания тока слева направо на рис. 9. Используем подход разложения Шеннона для анализа схемы рис. 11.

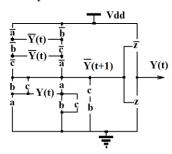


Рис. 11. Некоторая мостиковая схема

Получим две подсхемы: при Y(t)=0, в этом случае активны транзисторы в верхней части подсхемы – подключения "+" источника питания и возникает связь двух концов мостика. В нижней подсхеме в этом случае образуется разрыв (рис. 12).

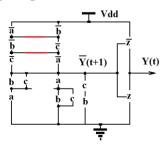


Рис. 12. Некоторая мостиковая схема $npu\ Y(t)=0$

Получаем:

$$\overline{Y}(t+1)_{+(Y=0)} = (\overline{a} \vee \overline{b})(\overline{b} \vee \overline{c})(\overline{c} \vee \overline{a}).$$
 (15)

$$\overline{Y}(t+1)_{0(Y=0)} = (b \lor c)a \lor a(b \lor c) \lor cb.$$
 (16)

В случае Y(t)=0 все наоборот (рис. 13).

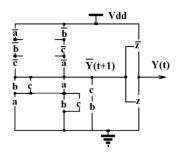


Рис. 13. Некоторая мостиковая схема $npu\ Y(t)=1$

Получаем:

$$\overline{Y}(t+1)_{+(Y=0)} = \overline{abc} \vee \overline{bca}.$$
 (17)

$$\overline{Y}(t+1)_{0(Y=0)} = (b \lor c \lor a)(a \lor b \lor c) \lor cb. \tag{18}$$

Дизъюнкция (15) и (17), (16) и (18) дает искомое описание мостиковой схемы.

Выводы

Таким образом, логика транзисторных КМОП-схем чаще всего последовательно-параллельная и формализуется ДНФ и скобочной формой логической функции, что позволяет уменьшить количество транзисторов. Последовательно-параллельная схема с переплетением не может быть непосредственно представлена цепочкой символов.

В статье предложена формализация таких схем с введением разрыва, что позволяет получить описание в виде двух поддеревьев. Формальное описание в виде одного дерева может быть использовано для универсальных элементов LUT ПЛИС. Мостиковые КМОПсхемы могут быть формализованы с использованием разложения Шеннона по символу мостика. В случае наличия нескольких мостиков по разным переменным необходимо рассматривать все возможные комбинации присвоения значений 0,1 этим переменным.

В дальнейшем целесообразно исследовать вопрос редукции последовательно — параллельных схем в мостиковые с учетом оценок сложности. То есть определить условия того, когда редуцированная схема будет проще исходной.

Список литературы

- 1. Степченков Ю.А., Денисов А.Н., Дьяченко Ю.Г., Гринфельд Ф.И., Филимоненко О.П., Морозов Н.В., Степченков Д.Ю. Библиотека элементов для проектирования самосинхронных полузаказных БМК микросхем серий 5503/5507 М.: ИПИ РАН, 2014. 296 с.
- 2. *Угрюмов Е.П.* Цифровая схемотехника: учеб. пособие. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2007. 782 с.
- 3. *Тюрин С.Ф., Каменских А.Н.* Методика комбинированного резервирования в самосинхронных схемах // Вестник Пермского уни-

- верситета. Серия: Математика. Механика. Информатика. 2016. № 4(35). С. 63–67.
- 4. Тюрин С.Ф., Каменских А.Н. Формальная система вывода резервированных КМДП структур отказоустойчивых самосинхронных схем // Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления. 2016. № 2(18). С. 120–135.
- 5. Строгонов А., Цыбин С. Программируемая коммутация ПЛИС: взгляд изнутри. URL: http://www.kite.ru/articles/plis/2010_11_56.php (дата обращения: 11.06.2017).

Features of the transistors logic gates formalization

S. F. Tyurin

Perm State University; 15, Bukireva st., Perm, 614990, Russia

tyurinsergfeo@yandex.ru; +7 952-320-02-510

CMOS-circuits (complementary structure metal-oxide-semiconductor) are usually sequential-parallel and are described by the disjunctive normal form of the logical functions they realize. To simplify the scheme, a bracket form is used. An appropriate string of symbols can describe these structures. However, in a number of cases, schemes that can not be described by chains are used. In addition, sometimes the circuit introduces so-called bridge transistors. The article analyzes the features of the logical description of such schemes and attempts to formalize such schemes are made.

Keywords: Logic function; DNF; CMOS-circuit; gate; transistor.