Математика. Механика. Информатика

Вып. 2(33)

2016

удк 532.517.2 Об одном точном решении уравнений Навье– Стокса, описывающем неизотермическое крупномасштабное течение во вращающемся слое жидкости со свободной верхней границей

К. Г. Шварц

Пермский государственный национальный исследовательский университет Россия, 614990, Пермь, ул. Букирева, 15 kosch@psu.ru; (342) 2396409

Аналитически представлено точное решение уравнений Навье–Стокса, описывающее течение жидкости во вращающемся горизонтальном слое с твердой и теплоизолированной нижней и свободной верхней границей. На верхней границе задано постоянное тангенциальное напряжение внешней силы и имеется теплоотдача по закону Ньютона. Температура среды над поверхностью слоя является линейной функцией горизонтальных координат. Решение находится из краевой задачи для обыкновенных дифференциальных уравнений для скорости и температуры. Исследуется вид решения в зависимости от чисел Тейлора, Грасгофа, Рейнольдса и Био.

Ключевые слова: *горизонтальная конвекция; точное решение; неизотермическое течение.* DOI: 10.17072/1993-0550-2016-2-118-123

Введение

В плоском горизонтальном вращающемся слое изотермической жидкости под действием трения на нижней твердой границе и заданной постоянной скорости движения на свободной верхней границе возникает течение Экмана [1, 2], имеющее важное геофизическое приложение. Исходя из баланса сил, обусловленных турбулентным трением между горизонтальными слоями воды и кориолисовым ускорением, Экман свел проблему к краевой задаче для обыкновенного дифференциального уравнения для скорости и нашел в [1] аналитическое решением для верхнего слоя океана, которое получило позднее название экмановского слоя трения. Течение имеет характерную спиралевидную форму - "спираль Экмана".

В современных моделях, описывающих океаническую циркуляцию, на верхней гра-

нице слоя для скорости рассматривается, как правило, другое граничное условие: задается величина тангенциальных напряжений внешней силы (ветра). При этом поперек слоя также формируется крупномасштабное пограничное течение экмановского типа [3–5]. Кроме того, подобные течения, описанные аналитически в бесконечном горизонтальном слое вращающейся жидкости со свободной верхней границей, используются для исследования нелинейных эффектов экмановского слоя [6] и для получения моделей двумерного вихревого движения жидкости в рамках теории мелкой воды [7–10].

В монографии [11] представлено семейство точных решений уравнений Навье– Стокса, описывающих адвективные течения, возникающие во вращающемся бесконечном горизонтальном слое жидкости под действием линейного распределения температуры на его границах. В частности было описано течение, возникающее в слое с твердой нижней и сво-

[©] Шварц К. Г., 2016

бодной верхней границей [12, 13], которое тоже имеет характерную спиралевидную форму.

В данной работе описывается комбинированное крупномасштабное течение, возникающее во вращающемся горизонтальном слое жидкости, нижняя граница которого твердая и теплоизолированная, а верхняя – свободная. На ней задается постоянное тангенциальное напряжение внешней силы и задано линейное распределение температуры.

1. Математическая модель

Рассмотрим бесконечный горизонтальный слой несжимаемой жидкости с твердыми границами $z = \pm h$, который вращается с постоянной угловой скоростью Ω_0 . Ось вращения сонаправлена с вертикальной осью координат Oz. Нижняя граница (z = -h) твердая и теплоизолированная:

$$\vec{v} = 0, \ \frac{\partial T}{\partial z} = 0,$$
 (1.1)

где $\vec{v}(t, x, y, z) = (v_x, v_y, v_z)$ – вектор скорости, T(t, x, y, z) – температура жидкости. На свободной верхней границе (z = h) задано постоянное тангенциальное напряжение некоторой внешней силы, условие "жесткой крышки" для вертикальной компоненты скорости [14, 15], а поток тепла линейно меняется с горизонтальной координатой x:

$$\rho_0 v \frac{\partial v_{x,y}}{\partial z} = \tau_{x,y}, \ v_z = 0, \ \frac{\partial T}{\partial z} = -\gamma_A (T - Ax),$$
(1.2)

(A = const),где $\vec{\tau} = (\tau_x, \tau_y)$ – вектор тангенциальных напряжений, ρ_0 – средняя плотность жидкости, ν – вязкость, γ_A – эмпирический коэффициент теплообмена [17], Ax – температура внешней среды над верхней границей слоя.

Задано условие замкнутости потока:

$$\int_{-h}^{h} v_{x} dz = 0, \quad \int_{-h}^{h} v_{y} dz = 0. \quad (1.3)$$

Исследование течений будем проводить на основе уравнений конвекции в приближении Буссинеска во вращающейся системе отсчета с использованием декартовых координат [16]. Отношение конвективной силы, возникающей за счет неоднородности плотности в центробежном поле, к конвективной силе в поле тяжести определяется числом Фруда Fr [16]. Рассмотрим случай, когда $Fr = \Omega_0^2 l/g \ll 1$, здесь l – характерный горизонтальный масштаб, g – ускорение силы тяжести. В этом случае влияние поля тяжести существенно и можно пренебречь влиянием центробежной силы.

Выбрав в качестве единиц измерения длины x, y, z, времени t, скорости v_x, v_y, v_z . температуры T и давления P соответственно h, h^2/v , v/h, Ah и $\rho_0 v^2/h^2$ (где $\tau_0 = \sqrt{\tau_x^2 + \tau_y^2}$), получим уравнения в безразмерном виде:

$$\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} - \sqrt{Ta} \cdot v_y = (1.4)$$

$$= -\frac{\partial P}{\partial x} + \Delta v_x ,$$

$$\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} + \sqrt{Ta} \cdot v_x = (1.5)$$

$$= -\frac{\partial P}{\partial y} + \Delta v_y ,$$

$$\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} = (1.6)$$

$$= -\frac{\partial P}{\partial z} + \Delta v_z + GrT ,$$

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0, \qquad (1.7)$$

$$\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} = \frac{1}{\Pr} \Delta T . \quad (1.8)$$

Здесь $Ta = (2\Omega_0 h^2 / v)^2$ – число Тейлора, $R = \tau_0 h^2 / \rho_0 v^2$ – число Рейнольдса, $Gr = \frac{g\beta A h^4}{v^2}$ – число Грасгофа, $\Pr = v / \chi$ – число Прандтля, β – коэффициент теплового расширения [14], χ – коэффициент температуропроводности, оператор Лапласа:

$$\Delta \equiv \partial^2 / \partial x^2 + \partial^2 / \partial y^2 + \partial^2 / \partial z^2$$

Граничные условия для безразмерной скорости и температуры примут следующий вид:

при
$$z = 1 \frac{\partial v_x}{\partial z} = R \cos \alpha, \quad \frac{\partial v_y}{\partial z} = R \sin \alpha,$$

 $v_z = 0, \quad \frac{\partial T}{\partial z} = -Bi(T - Ax),$ (1.9)

при z = -1 $v_x = v_y = v_z = 0$, $\frac{\partial T}{\partial z} = 0$,

где
$$\cos \alpha = \frac{\tau_x}{\sqrt{\tau_x^2 + \tau_y^2}}, \ \sin \alpha = \frac{\tau_y}{\sqrt{\tau_x^2 + \tau_y^2}}$$

Угол α определяет направление вектора тангенциальных напряжений в заданной системе координат, $Bi = \gamma_A h$ – число Био.

2. Точное решение

Учитывая граничные условия (1.9)– (1.10) и условие несжимаемости жидкости (1.7), точное решение системы (1.4)–(1.8) будем искать в следующем виде:

$$v_x = u_0(z), v_y = v_0(z), v_z = 0,$$

 $T = x + \theta_0(z), P = p_0(x, y, z).$ (2.1)

Заметим, что $\theta_0(z)$ – это температура жидкости при x = 0.

Подставив формулы (2.1) в систему (1.4)–(1.8), получим систему уравнений для скорости, температуры и давления:

$$-\sqrt{Ta} \cdot v_0 = -\frac{\partial p_0}{\partial x} + u_0^{"}, \qquad (2.2)$$

$$\sqrt{Ta} \cdot u_0 = -\frac{\partial p_0}{\partial y} + v_0^{"}, \qquad (2.3)$$

$$\frac{\partial p_0}{\partial z} = \operatorname{Gr}(\mathbf{x} + \boldsymbol{\theta}_0), \qquad (2.4)$$

$$\Pr u_0 = \theta_0^{"}. \tag{2.5}$$

Граничные условия для скорости и температуры примут вид

$$u_0(-1) = 0, v_0(-1) = 0, \theta'_0(-1) = 0,$$
 (2.6)

$$u'_{0}(1) = R \cos \alpha, v'_{0}(1) = R \sin \alpha, \theta'_{0}(1) = Bi\theta_{0}(1),$$
(2.7)

$$\int_{-1}^{1} u_0(z) dz = 0, \quad \int_{-1}^{1} v_0(z) dz = 0. \quad (2.8)$$

Продифференцируем (2.4) по *x*, а (2.2) по *z*, затем, аналогично, продифференцируем (2.4) по *y*, а (2.3) по *z*. Введем комплексную

функцию скорости $M(z) = u_0(z) + iv_0(z)$, $i = \sqrt{-1}$, обозначим $\lambda = 4\sqrt{\frac{Ta}{4}}(1+i)$. Избавившись от давления, складывая продифференцированные (2.2) и (2.3), получим уравнение для скорости:

$$M''(z) - \lambda^2 M'(z) = Gr$$
, (2.9)

с краевыми условиями

$$M(-1) = 0, M'(1) = R \cdot e^{i\alpha},$$

$$\int_{-1}^{1} M(z) dz = 0.$$
 (2.10)

Общее решение уравнения (2.9) имеет вид

$$M(z) = C_1 ch(\lambda z) + C_2 sh(\lambda z) - \frac{1}{\lambda^2} [C_3 + Gr \cdot z],$$

откуда

$$M'(z) = C_1 \lambda sh(\lambda z) + C_2 \lambda ch(\lambda z) - \frac{Gr}{\lambda^2}$$

Из третьего граничного условия следует, что

$$0 = \int_{-1}^{1} M(z) dz = C_1 \frac{2sh\lambda}{\lambda} + C_2 \cdot 0 - \frac{1}{\lambda^2} [2C_3 + Gr \cdot 0]$$

и комплексная константа $C_3 == C_1 \lambda sh\lambda$,

$$M(z) = C_1\left(ch(\lambda z) - \frac{sh\lambda}{\lambda}\right) + C_2sh(\lambda z) - \frac{Gr}{\lambda^2} \cdot z \cdot$$

Учитывая остальные граничные условия (2.10), имеем

$$C_1 = -\frac{Gr}{\lambda^2} \left(-sh\lambda + \lambda ch\lambda \right) + Re^{i\alpha} sh\lambda ,$$

$$C_{2} = -\frac{Gr}{\lambda^{2}} \left(-ch\lambda + \frac{sh\lambda}{\lambda} - \lambda sh\lambda \right) + Re^{i\alpha} \left(ch\lambda - \frac{sh\lambda}{\lambda} \right)$$
$$M(z) = \frac{Gr}{\lambda^{2}} \left[f_{1}(z) - f_{2}(z) - z \right] + R \cdot e^{i\alpha} f_{1}(z), \quad (2.11)$$

где

$$f_1(z) = \frac{sh(\lambda(z+1)) - (sh\lambda + sh(\lambda z))sh\lambda/\lambda}{\lambda ch(2\lambda) - sh(2\lambda)/2},$$

$$f_2(z) = \frac{\lambda ch(\lambda(z-1)) - sh(2\lambda)/2}{\lambda ch(2\lambda) - sh(2\lambda)/2}.$$

$$u_0(z) = \operatorname{Re} M(z), \ v_0(z) = \operatorname{Im} M(z).$$
(2.12)

Отметим, что в (2.11) первое слагаемое описывает влияние адвекции, а второе слагаемое – воздействие тангенциальных напряжений на профиль скорости течения жидкости.

Проинтегрировав (2.9), мы получим, что $M''(z) - \lambda^2 M(z) = Gr z + C_3$. (2.13)

С другой стороны, умножим уравнение (2.3) на мнимую единицу и сложим с уравнением (2.2), получим

$$M''(z) - \lambda^2 M(z) = Grz + \left(\frac{\partial p_0}{\partial x} + i\frac{\partial p_0}{\partial y}\right).$$
(2.14)

Сравнив (2.13) с (2.14), имеем

$$\frac{\partial p_0}{\partial x} + i \frac{\partial p_0}{\partial y} = C_3 = C_1 \lambda \sinh \lambda ,$$
$$\frac{\partial p_0}{\partial x} = \operatorname{Re} C_3, \ \frac{\partial p_0}{\partial y} = \operatorname{Im} C_3.$$

Для нахождения $\theta_0(z)$, учитывая (2.3), преобразуем уравнение (2.5) к виду

$$\theta_0^{"}(z) = \frac{\Pr}{\sqrt{Ta}} \left(-\frac{\partial p_0}{\partial y} + v_0^{"}(z) \right).$$

Отсюда

$$\theta_0(z) = \frac{\Pr}{\sqrt{Ta}} (\operatorname{Im} C_3 \cdot f_3(z) + f_4(z)), \quad (2.15)$$

где

$$f_4(z) = v_0(z) - v_0(1) - v_0'(-1)\left(z - 1 - \frac{1}{Bi}\right) - \frac{R}{Bi}\sin\alpha.$$

 $f_3(z) = \frac{3-2z-z^2}{2},$

3. Исследование течения

Решение (2.12), (2.15) исходной задачи зависит от нескольких параметров.

3.1. Случай отсутствия вращения

При Ta = 0 математическое описание скорости и температуры упрощается:

$$u_{0}(z) = Gr \frac{1 - 6z - 3z^{2} + 4z^{3}}{24} +$$
(3.1)
+ $R \cos \alpha \frac{-1 + 2z + 3z^{2}}{8}$,
 $v_{0}(z) = R \sin \alpha \frac{-1 + 2z + 3z^{2}}{8}$, (3.2)

$$\theta_0(z) = \Pr Gr \frac{4z^5 - 5z^4 - 20z^3 + 10z^2 + 40z - 29}{96} + (3.3) + \Pr R \cos \alpha \frac{3z^4 + 4z^3 - 6z^2 - 12z + 11}{480}.$$

В изотермическом случае (Gr = 0) (рис. 1,а) скорость имеет параболический профиль. Минимальное значение скорость принимает при z = -1/3, максимальное – при z = 1, скорость меняет направление при z = 1/3. Температура $\theta_0(z)$ положительна.

В случае отсутствия тангенциальных напряжений на верхней границе (R = 0) профиль скорости имеет кубический профиль (рис. 1,б), жидкость движется в противоположном направлении по сравнению с изотермическим случаем, температура $\theta_0(z)$ отрицательна.

Расчеты, сделанные при $\alpha = 0$, показали, что с ростом числа Грасгофа профиль скорости течения меняется. При $Gr/R \le 1,01$ в верхней части слоя жидкость движется вправо, а в нижней части – влево (рис.2). При Gr/R > 1,01 в слое формируются три струи, а при $Gr/R \ge 3$ их снова две. Температура разных знаков становится при $Gr/R \ge 5/3$ и становится отрицательной при $Gr/R \ge 3$.

Рис. 1. Профили скорости $u_0(z) - 1$ и температуры $\theta_0(z) - 2$ в изотермическом случае при R=1, $\alpha=0$, Gr=0 (а), при отсутствии тангенциальных напряжений при R=0, Gr=1 (б)

Gr/R = 1, -2 npu Gr/R = 1,5, -3 npu Gr/R = 3 $\partial n\pi - 2$ npu $\alpha = 0, Pr = 6,7$

3.2. Случай наличия вращения

В изотермическом случае (Gr = 0) течение, возникающее во вращающемся слое, будет меняться в зависимости от числа Тейлора и направления вектора $\vec{\tau}$ на свободной поверхности. При всех значениях *Та* профили скорости $u_0(z)$ и $v_0(z)$ описывают спиралевидное движение, что иллюстрирует годограф вектора скорости на рис. 3, 4.

Рис. 3. Зависимость компонент скорости $u_0(z)$ (a) и $v_0(z)$ (б) для $\alpha = 0$ и Gr = 0 при l

Рис. 4. Годограф вектора скорости в изотермическом случае при $Ta = 10^6$ и $\alpha = 0$

Итак, скорость принимает максимальные значения вблизи верхней границы или непосредственно на ней. С ростом числа Тейлора влияние тангенциальных напряжений на скорость течения падает, максимум скорости уменьшается, движение локализуется вблизи свободной границы (рис. 3). Вторая компонента скорости при $0 \le Ta \le 35$ монотонно возрастает по модулю, а затем начинает убывать.

Представляет интерес зависимость угла α от числа Тейлора *Ta*, когда *x*-я компонента скорости на верхней границе при *z* = 1 принимает максимальное по модулю значение, а вторая компонента скорости там же равна ну-

лю. Эта зависимость определяется из (2.11) по формуле $tg\alpha = -\text{Im } f_1(1)/\text{Re } f_1(1)$. С ростом числа Тейлора угол растет от нуля градусов при Ta=0, а при Ta >>1 угол стремится к 45°.

Для неизотермического случая при R = 0 скорость чисто адвективного течения также принимает максимальные значения вблизи верхней границы. Вторая компонента скорости при $0 \le Ta \le 24$ монотонно возрастает по модулю, а затем начинает убывать. Отметим, что движение спиральное (рис. 5, 6), но направление спирали противоположное.

Рис. 5. Зависимость компонент скорости $u_0(z)$ (a) и $v_0(z)$ (б) для $\alpha = 0$ и R = 0при $l - Ta = 10, 2 - Ta = 10^3, 3 - Ta = 10^6$

Рис. 6. Годограф вектора скорости чисто адвективного течения при $Ta = 10^3$ и $\alpha = 0$

В общем случае течение является комбинацией ветрового и адвективного течения и является спиральным.

Заключение

Таким образом, адвекция формирует спиральное движение, накладывающееся на спиральное течение, возникающее под воздействием ветрового напряжения на верхней свободной границе.

Список литературы

- Ekman V.W. On the influence of the Earth's rotation on ocean currents // Arkiv Mat., Astr., Phys., 1905. Vol. 2. № 11. P.1–53.
- Ekman V.W. Uber Horizontazirkulation bei winder-reugten Meeresstromungen // Arkiv Mat., Astr., Phys., 1923. Vol. 17. № 26. P. 1–74.
- 3. Педлоски Дж. Геофизическая гидродинамика: В 2-х томах. М.: Мир, 1981. 396 с.
- Haeusser T.M., Leibovich S. Pattern formation in the marginally unstable Ekman layer // J. Fluid Mech. 2003. Vol. 479. P. 125–144. DOI: 10.1017/S0022112002003415
- Шварц К.Г. Об устойчивости течения, возникающего под действием тангенциальных напряжений на верхней границе вращающегося слоя жидкости // XV Зимняя школа по механике сплошных сред: сб. статей. В 3-х ч. Ч. З. Екатеринбург: УрО РАН, 2007. С. 266–269.
- Аристов С.Н., Фрик П.Г. Нелинейные эффекты влияния экмановского слоя на динамику крупномасштабных вихрей в мелкой воде // Прикладная механика и техническая физика, 1991. № 2. С. 49–54.
- Аристов С.Н., Шварц К.Г. Эволюция ветровой циркуляции в неизотермическом океане // Океанология. 1990. Т. 30, вып. 4. С. 562–566.
- Aristov S.N., Shvarts K.G. On the influence of salinity exchange on the circulation of a fluid in an enclosed basin // Soviet journal of physical oceanography, 1991. Vol. 2, № 4. P. 293–298. DOI 10.1007/ BF02346081.
- Aristov S.N., Schwarz K.G. New twodimensional model of large- scale oceanic circulation. Proc. of 2nd International Conference of Computer Modelling in Ocean Engineering'91, Barcelona/30 September–4 October 1991, Balkema, Rotterdam. P. 49–54.

- 10. Козлов В.Ф. Модель двумерного вихревого движения жидкости с механизмом вовлечения // Известия РАН. Механика жидкости и газа. 1992. № 6. С. 49–56.
- 11. Аристов С.Н., Шварц К.Г. Вихревые течения адвективной природы во вращающемся слое жидкости. Пермь: Перм. ун-т. 2006. 154 с.
- 12. Shvarts K.G., Boudlal A. Effect of rotation on stability of advective flow in horizontal liquid layer with a free upper boundary // Journal of Physics: Conference Series. 2010, Vol. 216, № 1. 14 p.
- 13. Кочинов А.Ю., Шварц К.Г. Конечно– амплитудные возмущения адвективных течений в горизонтальном слое несжимаемой жидкости со свободной верхней границей при слабом вращении // Вычислительная механика сплошных сред. 2015. Т. 8, № 2. С. 174–187. DOI: 10.7242/1999-6691/2015.8.2.15
- 14. *Аристов С.Н., Шварц К.Г.* Вихревые течения в тонких слоях жидкости. Киров: ВятГУ, 2011. 207 с.
- Шварц К.Г. Модели геофизической гидродинамики: учеб. пособие по спецкурсу. Изд. 2-е, доп. и испр. / Перм. ун-т. Пермь, 2006. 66 с.
- 16. Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. М.: Наука, 1972. 392 с.
- 17. Сеидов Д.Г. Моделирование синоптической и климатической изменчивости океана. Л.: Гидрометеоиздат, 1985. 208 с.

On an exact solution of the Navier-Stokes equations describing non-isothermal large-scale flow in a rotating fluid layer with a free upper boundary

K. G. Shvarts

Perm State University; 15, Bukireva st., Perm, 614990, Russia

kosch@psu.ru; (342) 2396409

The paper provides analytical presentation of an exact solution of the Navier–Stokes equations describing fluid flow in a rotating horizontal layer with a rigid and thermally insulated bottom boundary and a free upper boundary. At the upper boundary a constant tangential stress of the external force is set and heat transfer according to Newton's law occurs. The temperature of the medium above the surface layer is a linear function of horizontal coordinates. The solution is found from the boundary-value problem for ordinary differential equations for velocity and temperature. The type of solution is investigated depending on the Taylor, Grashof, Reynolds and Biot numbers.

Keywords: horizontal convection, exact solution, non-isothermal flow.