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All motions and processes in Nature and technology are evolving according to the ever increasing parameter called time. This includes the propagation of fields at finite (possibly variable) velocities. For each time interval of the process, there is a starting state (the cause) and later the current state (the effect or result). This is known as the principle of causality and presents an orderly deterministic or stochastic (under disturbances or in probabilistic description) evolution of a process. The causality in process evolution at finite velocities is conditioned on the physical processes that transmit the action in process evolution, and it is achievable only within some margin of accuracy. Time delays in transmission of actions by physical processes are natural and unavoidable, though in many cases they may be small and not affecting the motion or a process. In this paper, the notion of causality in mathematics, physics and process evolution is presented and discussed, which opens new avenues and perspectives for research and development in mathematics, physics, life sciences, engineering and technology.
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1. Introduction(
Back in1924, the first volume of Methods of Mathematical Physics by Richard Courant and David Hilbert was published by the firm of Julius Springer, and in the preface Courant says: “Since the seventeenth century, physical intuition has served as a vital source for mathematical problems and methods. Recent trends and fashions have, however, weakened the connection between mathematics and physics; mathematicians, turning away from the roots of mathematics in intuition, have concentrated on refinement and emphasized the postulational side of mathematics, and at times have overlooked the unity of their science with physics and other fields. In many cases, physicists have ceased to appreciate the attitudes of mathematicians. This rift is unquestionably a serious threat to science as a whole; the broad stream of scientific development may split into smaller rivulets and dry out…" The drive for innovation at all costs gained so much popularity and prominence that certain natural laws and properties were not noticed in some surrealistic considerations promoting new theories and notions, like the absolute time, the infinite speed and instantaneous actions. As an example, we reproduce the announcement in the Notices of American Mathematical Society, p. 453, of March 2012: " *2–4 Superluminal Physics & Instantaneous Physics – as new trends in research (electronic conference), University of New Mexico, 200 College Road, New Mexico. 

Description: In a similar way as passing from Euclidean Geometry to Non-Euclidean Geometry, we can pass from Subluminal Physics to Superluminal Physics, and further to Instantaneous Physics (instantaneous traveling). In the lights of two consecutive successful CERN experiments with superluminal particles in the Fall of 2011, we believe these two new fields of research should begin developing. A physical law has a form in Newtonian physics, another form in the Relativity Theory, and different forms at Superluminal theory and at Instantaneous (infinite) speeds – according to the S-Denying Theory spectrum. First one extends physical laws, formulas and theories to superluminal traveling and to instantaneous traveling. Afterwards one founds a general theory that unites all theories at low speeds, relativistic speeds, superluminal speeds, and instantaneous speeds – as in the S-Multispace Theory.

Deadline: Papers should be sent by July 1, 2012, to Professor … (name omitted).

Information: http://fs.gallup.unm.edu/SuperluminalPhysics.htm. "
The consideration of Newtonian absolute time, instantaneous transmission of actions and instantaneous propagation of light and certain fields may serve as an approximation to reality, bypassing relativity. However, the "Instantaneous Physics…at Instantaneous (infinite) speeds…" as a general approach to sciences is a product of fantasy, and often just wishful thinking, according to the following citation:

"Experimental results can be clouded by wishful thinking. Back in 1953, Nobel Prize-winning chemist Irving Langmuir coined the expression "pathological science" to describe a process in which a scientist seems to follow the scientific method but unconsciously strays in favor of wishful thinking. Pathological science is distinct from fraud; it is essentially faulty science promoted by people who are somehow blind to the evidence against their own ideas." (Montreal Gazette, September 15, 2012, page B5.)

In this paper, some general concepts of natural sciences in their interrelation are discussed, which present a unified view of process evolution in nature and technology.
The paper is organized as follows. In Sec. 2, some basic concepts of natural sciences are formulated for further analysis and discussion. In Sec. 3, the natural time uncertainty is considered in comparison with Heisenberg’s relation. Section 4 presents the notion of causality in application to mathematics, physics, and technology, and in Section 5 the general results and some special points of interest are summarized, followed by the references immediately relative to the problems considered.
2. Basic Concepts of Natural Sciences
The most important concept in evolution of natural processes is the concept of Time. Usually, the current time is measured by clocks, with different clocks in different spots showing different current times (some of which wrong because of bad clocks). Here we consider the Time as a physical parameter which existed always, even in the epoch of dinosaurs when there were no clocks. This time-parameter is present and changing in all processes. It is convenient to consider this unique time-parameter by its uniformly increasing value which presents the positive orientation of natural time. We do not consider speeding or lagging clocks or time-functions, sometimes used to denote the time with respect to which some processes may be described in a simpler way.

In consideration of this unique natural time, the following suppositions are well known.
Concept 1. Every process is evolving by transmission of actions (information) which takes time. This axiom is known as the Principle of Causality stating that every process evolving from one state  X1  at time  t1  to another state  X2  at time  t2,  (t = t2 (  t1 > 0, is causal in the sense that  X1  is the cause of  X2  which is the effect produced by  X1 in a finite time (t > 0. Sometimes the cause is understood as the first impulse (birth, action) that starts the process without any connection to time or further evolution of the process. We do not consider such point-wise restriction of causality in this paper.
Remark 2.1. We do not ascribe to the states  X1, X2,  time moments  t1 , t2  or time intervals (t > 0 some exact deterministic or probabilistic sense, or the property of  “being observed” which implies strict "determinacy of future events" (W. Heisenberg, 1927). We consider these terms as some natural realizations that exist irrespective of our capacity to experimentally quantify them, staying out of the Einstein – Bohr – Heisenberg discussion during the years 1925–1927 and later, see [1] and [2, p. 371]. In applications, those terms can be considered as exact values, or abstract probabilistic states, or even as soft sets [3]. However, for simplicity of exposition, we consider these terms as certain defined values actually appearing in process evolution subject to information transmittal.
Concept 2. There are no instantaneous changes in Nature. This means that the cause-effect relation is actually the time-relation between two states or processes of which the later state follows the preceding state. Hence, causality defined above is the name for information transmittal in finite time, and vice-versa. The word "instantaneous" is also used when difference  (t = t2 (  t1 > 0  is not distinguishable by available devices. 
Concept 3. The finite time of information transmittal means that the velocity V of the signals transmitting the action (information) is finite, 0 ( V ( V* < ( , where  V*  is the greatest known and measurable velocity of some actual signals. At the time of this article, the value V* is known to be the speed of light V* = c ( 300 000 km/sec which is experimentally measured, see [4] and references therein, thus not exact and, maybe, not even point-wise, varying in some interval  V*  =  c ( (c1, c2)  depending on the precision of the experiments. If the actual velocity V of signals transmitting the information is zero, 
V = 0, there is no information (action) transmitted, thus no process and no change.

Concept 4. The information (action) transmittal is directional and follows one, several, or all (spherical waves) directions which are optimal with respect to some criteria (known or unknown) that assure the orderly transmission of actions. These optimality criteria hold for any small interval of time, thus presenting the total optimality considered in [5], in contrast to the terminal optimality imposed by technical or economic considerations. For example, Fermat’s principle of minimum time for passage of the rays of light, or the least action principles in mechanics are total optimality criteria that determine the path for rays of light or actual motion in mechanics. The optimality criteria may be not fixed, but changing in time which implies the changing directions or velocities, leading to a process corresponding to variable optimality which prescribes directions of signals. All processes evolve optimally with respect to the optimality prescribed by Nature or by technological requirements in process control which modify the optimality over some intervals of time in the way desired by people.

Concept 5. If the processes P1, P2   evolving in different frames K1, K2  are dependent in their evolution, such dependence is realized by signals transmitting the action at finite speed which implies relativity [6, 7] present in such interacting processes, not only in their observation by the rays of light.
Concept 6. A measured (identified, occurred) point-value z(t) of time, z(t)( t, or some other quantity, z(t)( t, depending on time, when transmitted by a physical process relates to an instant which, at the moment of reception, is already in the past. If transmission is carried over a short length with the speed of light, its delay ( > 0 is very small, so transmitted z(t) is considered at reception as current value despite that, in fact, it is already past, the current value being z(t+() where ( > 0 is unknown and depends on a finite speed of information transmittal.
The above six concepts are postulated as the existing general laws of Nature which we know from everyday experience. There are other laws of Nature (e.g., Newton’s laws) corresponding to specific phenomena or processes which may be considered for other purposes. We do not inquire why these self-evident laws of Nature exist and study the properties of processes that follow from those laws. From such consideration, it is clear that the notion of nature represented by the matter plus motion (of that matter) in space should include also the signals transmitting the action (information) between different material points of the space. This means that the nature is relativistic, even without the rays of light, sound or electromagnetic waves. There are other signals transmitting the information, for example those that act in the 3rd law of Newton: action = counteraction which do not coincide in time, according to the Concept 2.
The consideration of z(t) instead of z(t+() creates time uncertainty which affects all physical experiments, real time computations and process evolution, with important implications in different fields of science and technology. We do not consider errors caused by imprecision of instruments. Different errors may be caused by the action of a measuring device upon the object, which action (force, electromagnetic field, etc.) may change the value of the parameter being measured. These errors we call physical errors, and a well known example is Heisenberg’s relation. The imprecision of quite different nature is due to natural time delays caused by finite speed of information transmittal. These delays must be included into consideration to reflect the influence of time uncertainty and obtain real time representations of physical phenomena that appear in experiments and real time computations.
Remark 2.2. The above axioms should not be understood as an attempt to construct a particular consistent and complete theory of some part in physical knowledge about the Nature. This is not needed and may be impossible to achieve, as proven by Kurt Gödel for mathematics, see [8], or [9] for concise exposition and specific papers (p. 349). We try to remind and reinstate some basic facts that were not given enough attention in the past 400 years of development in physics and natural sciences. We concentrate on some properties concerning the transmittal of information (action), such as finite causality, which are important to account in the experimental and theoretical studies. There are other important aspects of physics, e.g. the conservation and/or dissipation laws in information transmittal, that have been studied for specific processes and need thorough examination in their interrelation for eventual development of a unified view in physics and other natural sciences, taking into account the finite speed of information transmittal considered in this paper. 
3. Time Uncertainty in Comparison 
with Heisenberg’s Relation

Concept 6 of time uncertainty following from the Principle of Causality (Concept 1) was first introduced in [5, pp. 1344–1345] in connection with the consideration of totally optimal (extremal) fields of trajectories, and then used in [10] in connection to special relativity. We reproduce the relevant citation from [10, pp. 1558-1559] which contains comparison of the errors due to natural time delays caused by finite speed of information transmittal with physical errors due to the action of external forces in measuring devices.

"Denote by z(t) some quantity (position, velocity, mass, energy, charge, temperature, etc.) that changes with time. To avoid confusion with physical uncertainty (Heisenberg’s relation), suppose for a moment that, when measuring the value of  z(t) with some supernatural device, we do not interfere with its state or magnitude by the external action of the measuring device; thus, the measure of z(t) is precise and made at the very moment t. To receive and use this information about z(t), we have to transmit it to some other device(s) which we assume to be precise and free of errors in reception and action too. Upon reception, it is usually said that z(t) is observed or "known" (the measuring action is concentrated upon z(t) at a moment t, but its conception, utilization, value or quality appears somewhere else, at a distance). 

Time-uncertainty statement. The value z(t) is not known at time  t .

Indeed, since the speed of information transmittal is finite (by the postulate of Einstein, it is less than the speed of light), so the value  z(t)  is received at a moment  t + (, ( > 0. Hence,  z(t)  is not known and cannot be used at time  t,  but only later. It implies a finite time error (z = z(t+() – z(t), to which other errors due to physical uncertainty and measurement imprecision add up. This delay of information can be felt in everyday life. It can cause a car accident: if a driver in front of you applies brakes, you see his red lights but can react only in a second or two, even later if you are talking on a cell phone. Let us compare the error in location of a particle due to time uncertainty with the error in location of the same particle due to physical uncertainty implied by Heisenberg’s relation. Using data from [11, p.55] for helium, the lightest monatomic gas, under normal conditions (0° C and 1 atm.) we have in  c.g.s.° C  system the following data:

Planck’s constant           h  =  6.6242(10 -27

Boltzmann constant        k  =  1.3805(10 -16

Atomic mass of  helium m =  1.6725(10 -24

Absolute temperature (Kelvin)   T  =  273.
With these data, the Heisenberg uncertainty relation (physical uncertainty) gives "a lower limit of the uncertainty (x in the location of  the particle" [11, p. 64]:

(x > h / 2( (3mkT)½  =  24.2345(10 -10  (cm),  (1)

where (3mkT)½ = m v = p  is the momentum of the particle and v = (3kT/m)½ ( 2.6(10 5  cm/s is the root-mean-square velocity of the haphazard thermal motion. Now, assuming that the speed of information transmittal is equal to the speed of light in a vacuum c =  2.9979250(10 10  (  3(10 10 (cm/s), we obtain a lower limit of  the error  (*x = (z  due to time uncertainty ( > 0 for the location of  the same particle  x = z :

(*x = (z = w(  =  wl / c > 0.867(10 - 3 (cm).  (2)  
Here w = (z / (  (  dz/dt  denotes the mean velocity of z(t) = x(t) during the time increment ( = l / c with l being the length of information transmittal in cm. If "information transmittal" means establishing a steady current in a circuit of a measuring device, that is, electric field to be set up along the circuit for ordered motion of the electrons to begin (propagation of electric field), then its velocity is the speed of light c in vacuum. In this case, delay for the signal of a change in location x  of  a  particle for l = 100 cm is ( = l / c = 0.333564(108 s, so that, with w = v ( 2.6(105 cm/s, we have a lower bound for the uncertainty in the location of  x  due to time delay as given in (2), which is much greater than measurement uncertainty in the location of x presented in (1). However, if "information transmittal" meant measuring with a steady current for which, at the maximum permissible current densities, the average velocity of the ordered motion of the electrons would be v* ( 10 - 2  cm/s, so using this velocity instead of  the speed of light c, we would get 
( = l / v* ( 10 4 s,  yielding the estimate  
(*x = (z = w(  (  2.6(10 9 cm, which means that steady current cannot be used for such experiments.

…As a matter of fact, the time-uncertainty shifts our knowledge to the past. With a small shift, it makes no harm. With a greater shift, it has to be taken into account. In such cases, care should be taken when verifying abstract theories by experimental data. With large shift, we should recognize that our knowledge pertains to a distant past only. For example, certain stars are known to be many light years afar from the Earth. It means that what we know from our astronomical observations about distant parts of the Universe is nothing more than past time slices distant from our time of several thousand years by many light years to the past. Natural time delays are not just a question of history, – some beautiful theories dealing with motion of small particles at high velocities may need an adjustment to take into account the time uncertainty.
Suppose that a measuring device is not at a distance of 100 cm as cited above, but only 1 mm = 0.1 cm afar from the object being measured. Then the time delay for the measuring signal will be  ( = l / c = 0.333564(10 - 11 s, causing the uncertainty in location of  the atom of helium 
(*x = (z  =  w(  =  wl / c > 0.867(10 - 6 cm, thousand times less than given in (2) but still 358 times more than the lower limit given by Heisenberg’s relation (1). Comparing these uncertainties with the standard values for Plank’s constant, Boltzmann constant and the atomic mass of helium in c.g.s.oC system which are all in the order of 10 -27  to 10 -16 , we see that those constants are very difficult to measure. However, they can be introduced in theoretical formulae to accommodate theoretical or experimental results supporting certain physical models. Even if our instrumentation were infinitely precise (zero errors), those physical constants could be measured with such high precision only if physical experiments that involve information transmittal were so designed that time uncertainty cancelled out. Fortunately, there are physical realities that involve time and do not depend on time-uncertainty as defined above, which uncertainty, indeed, may be cancelled out."
4. Causality in Mathematics, Physics and Technology
The notion of causality in mathematics, natural sciences and technology, as defined in Concept 1, Sec. 2, is the time relation that appears in motion, in transmission of signals and actions, and in any changes occurred in the course of time. It should not be confused with the cause-effect relations in logic, geometry, number theory or in other fields of knowledge that do not include time as ever increasing parameter of evolution. 
To make it clear, let us consider the Second law of Newton which was formulated by Newton himself as follows: "Law II. The change of motion is proportional to the motive force impressed and is made in the direction of the right line in which that force is impressed" [12], see also [13, p. 259]. In high school textbooks, this law is written in the form: ma = F, where m means a constant mass,  a – the acceleration, and F  is "the motive force impressed” or simply "a force", a self-explanatory notion known from life experience. In university textbooks, the Law II is specified in more exact terms:
ma = mx’’ = F(t, x, v), v = x’(t) = lim[x(t+dt) –
–x(t)]/dt as dt( 0, x(0)=x0 , v(0)=v0     (3)

which define a particular motion for  t ( 0  starting at x0 , v0  with the mass  m  presumed to be constant. For m(t) ( const, Georg Buquoy proposed (1812) another formula:
mdv + (v – w)dm = F(t, x, v)dt  or  mdv/dt +
+ (v – w)dm/dt = F(t, x, v),             (4)

where v – w is the relative velocity with which dm  is ejected from a moving body, see [14, 15, 16] and the book [17 pp. 84, 102, 165–168, 195–213].
Both formulae are non-causal since at any current moment t, the value x(t+ dt), dt > 0,  does not exist and cannot be known (measured) at a future moment  t + dt > t  not yet realized. The Newton-Leibniz right time and partial derivatives produce non-causal equations of rigid frozen evolutions as if the future values x(t + dt) were already known in the real physical processes. However, it is the consideration of the left time derivatives v* = lim[x(t) – x(t( dt)]/dt as dt( 0, see [18], or delayed arguments in the right-hand side as v = x’(t ( (1), v’ = x’’(t ( (2), etc., with (i > 0, 
dt < (i  all i, see, e.g., [19–24] that present the causal equations as valid descriptions of the realistic physical processes that allow us to use controls dependent on the higher order left or delayed derivatives in the right-hand side F(t, x, v*, v*’, v*’’, v*’’’, ...) in order to control the motion and effectively alleviate actual disturbances and uncertainties always present in nature. For example, the autopilot control systems for airplanes are now constructed without the use of acceleration assisted control, according to the current textbook formula (3) for the Second law of Newton. Such autopilots are dangerous if applied at take-off, at landing, or in bad weather, in which cases the pilot has to take controls since he feels the acceleration and sudden changes of velocity of the plane even if the Pitot tubes fail in flight as already happened on May 31, 2009 in the Airbus A330 flight between Rio de Janeiro and Paris, see [18, Sec. 8}.
4.1. Time orientation and causality

In the literature, velocity v(t) on which the motive force F(.) in (3) may depend is defined as right derivative through the limit in (3) at right. However, at the moment  t  of actual motion, the value  x(t + dt)  does not exist for any  dt > 0.  This means that the limit in (3) also does not exist, so that equation (3) refers, in fact, to some prospective values of x(t) in future, being thus non-causal.  The reader may object: well, then what is shown on the speedometer of a car? Yes, the velocity is shown which is actually measured as left time derivative 
v(t) = lim [x(t)( x(t( dt)]/dt,   dt( 0,  dt > 0,
not right derivative as written in (3). This reflects the positive orientation of time:  suppose that x(t)  in (3) is a distance of the moving mass  m  from the origin if the motion has started at time t = 0 with initial conditions indicated in (3). If we consider a moment t* > 0 with the past history of motion  registered  in a measuring device or in a computer over the segment [0, t*], then over the interval (0, t*)  there exist both right and left derivatives; at the moment t = 0, there exists only right derivative; at t = t* there exists only left derivative, and over the future interval  (t*, T),  
T  (  (,  there is no motion yet,  thus,  no derivatives exist,  and the same on the interval (-(, 0) when there was no motion at all. This concerns all natural processes (physical, biological, etc.) developing in time: right time derivatives may exist only in the registered past history of a process. Of course, right derivatives at the current moment, as well as future situations and/or decisions (called rational expectations), can be postulated (imagined as desired) and taken into account, which is routinely done in economy and finance; but in engineering and technology it may be improper and needless to do so. In natural sciences, there is another way to include current accelerations and other higher order time derivatives into process equations, thereby retaining their causality.

In motion, the effects of time orientation and time uncertainty are quite different. Indeed, velocity v(t) as left derivative continuously measured by speedometer in a car appears on driver’s panel with a delay ( > 0 due to a finite speed of information transmittal. Hence, at the moment t = t*, a driver sees the velocity  v(t*-(), not the actual velocity  v(t*).  However, in the equation (3) of the motion, the force F(.) is impressed  (not measured by a device, but felt as are, e.g., gravitational or resistance forces), thus, at a moment t*, we have the force F(t*, x(t*), v(t*)) acting without delay if there is no information transmittal for the values x(t), v(t), in which case time-uncertainty is not implicated in the motion governed by the laws of mechanics. In contrast, if there is a control u(.) in (3) that depends on certain parameters which are measured on the trajectory and transmitted into the power train of the motion, then u(t-() actually depends on  ( > 0  at each moment  t > 0, through those measured parameters. 
4.2. Causal representations of the general (Newton-Buquoy) Law of Motion

Equations of motion usually contain controls: w in (4) or  u(t) directly in F(.), and it is not clear why  w  and  u(t)  must not depend on acceleration x’’(t) and its rate of change x’’’(t). In fact, they can, and the so called acceleration assisted control is widely used in practice for soft regulation. With manual control, the pilot of an aircraft or spacecraft does it following his personal feeling of the actual acceleration x’’(t) and its rate of change  x’’’(t)  felt by the pilot. In manually controlled aircraft, the pilot always employs a feedback control of the form 
u[t-(, x(t-(), x’’(t-(), x’’’(t-()]
which depends on time t (with delay  ( > 0  due to a finite speed of information transmittal in human senses) and distance x(t), if it is seen during landing, but does not depend on  v  since constant velocity is not felt by a human being nor by instruments on board, according to the postulate of physical equivalence of all inertial systems. Dependence on velocity v(t) means, in fact, dependence on acceleration dv/dt which accompanies a varying velocity  v(t). Therefore, it is important to extend the real life situation in manual control onto automatic control systems by removing the existing restriction with a new choice of representation for the general law of motion, which would allow higher order left and/or delayed time derivatives in the right-hand side of (3)-(4) instead of the right time derivatives indicated there in the literature.
Consider equation (4) where w and/or dm/dt, thus u(t) as a general notation, may depend on acceleration and other higher order derivatives. Dividing (4) by  m(t) > 0  and using the left time derivatives at the right-hand side for 
t > 0, we can write the causal representation of the general equation of motion in the form:

x’’= dv/dt =[F(t, x(t), v(t)), u(t)]/m(t)=
=F*(t, x, x’-,x’’-, …, x(k)-), x(0)=x0, x’-(0)=v0,
(5)

where superscript (- ) indicates the left time derivative of corresponding variable which is written in normal script for better visibility. The only right time derivative is  x’’ = dv/dt, at left in (5) due to forward propagation of motion. It is clear that  F*(.) at right in (5) is well defined for all 
t > 0.  The highest order k ( 2 in (5) depends on the control  u(t) employed. For simplicity, the time-uncertainty is omitted from further considerations as well as m(t) which is not shown explicitly as a variable of  F*(.) in equation (5). This equation is of the second order, same as (3) and (4), since all left derivatives in (5) are well defined and measured on the trajectory of the moving system. It becomes obvious if (5) is written as  dv = F*(t,.) dt  where  F*(t,.)  is known at the current time t, so that for dt > 0 the motion is defined by the generalized force F*(t,.) in (5). The generalized equation (5) is integrated differently comparing with ordinary differential equations, and much simpler than differential equations with deviating arguments (FDEs), see below. 

If derivatives in (5) are interpreted as classical (right) derivatives, it is a mistake since (5) would become the k-th order equation and would not correspond to the real motion of a body. It is for this reason that it was meant as a blunder to consider forces depending on acceleration or higher order classical, i.e. right, time derivatives. However delayed right time derivatives in (5) can be considered in which case the equation of motion remains of the second order but its integration is much more complicated, see [19–23]. 
For a natural phenomenon with resistance in the force F*(.) of (5) depending on acceleration of a solid falling into a viscous liquid, see [25, p. 181] and [26, p. 34]. For an application of (5) to acceleration assisted hovercraft control, see [25, pp. 179-180] and [26, pp. 39-41]. 
Remark 4.1. Forces containing higher order derivatives can appear in equations of motion not only through controls. Such forces depending on accelerations have been considered by Sir Horace Lamb in equations of motion of a solid in ideal liquid, see [27, p.168, § 124, Equations (1)] with reference to Kirchhoff and Sir W. Thomson (1871), where forces of the fluid pressure linearly depended on the acceleration of the solid itself, see [27, p.168, Equations (2); p.169, Equations (3)]. Such forces usually can be taken into account by the introduction of adjoint masses, see example given in [27, p.190, § 137, Equations (2)] with reference to Thomson and Tait [28, Art. 321]. The author is grateful to V.V. Rumyantsev for these references.  (
The causal equation (5) can be solved by standard methods of ordinary differential equations, for which we need the following

Lemma 4.1 [25–26]. If a function x(t) is defined on an open interval  (a, b)  and has continuous left derivative on (a, b), then  x(t)  is continuously differentiable on  (a, b).
Proof. By hypothesis, for every  t ( (a, b)  there is a limit
x’-(t) = lim [x(t) – x(t - (t)] /(t , t - (t ( (a, b),    (6)

( t ( + 0
which, as a function of  t,  is continuous on (a, b), that is

lim x’-(t)  =  x’- (t0),
t0 ( (a, b). 
  (7)

t ( t 0

Let t - (t = t0 ,  then (6) can be rewritten as follows, yielding the right derivative at  t0 :

lim [x(t0 + (t) – x(t0)] /(t =
=x’+(t0) ( x’(t0), t0 + (t =  t ( (a, b).      (8)

( t ( + 0.
Since by construction,

[x(t) – x(t - (t)] /(t ( [x(t0 + (t) – x(t0)] /(t,
( t (  (a, b), ( t0 = t - (t ( (a, b),         (9)

so, from (6), (8), (9), we have  
x’-(t) = x’+(t0) ( x’(t0), 
which implies

x’-(t0) = x’+(t0) ( x’(t0),              (10)

as  ( t( +0,   t( t0  
for every   t0 ( (a, b).   (  

Remark 4.2. Left and right derivatives considered above are special cases of Dini derivatives and the Lemma, in a more general setting, corresponds to the Denjoy-Young-Saks Theorem [29] where only finiteness of a one-sided derivative is required for every t ( (a, b), implying differentiability of  x(t)  almost everywhere in (a, b).
(
Remark 4.3. As follows from (9) with 
t = (t0 + (t)(  t0 + 0,  as  (t( +0,  left derivatives in (5) can be regarded as delayed right derivatives: x(k)-(t) ( x(k)+(t0) = lim x(k)+(t( (t), as (t( +0. This, however, leads to theoretical complications [19–23], and may result in the loss of stability which might not be the case for the original equation (5), see [18, Sec. 4]. For these reasons, we do not use such representations.

4.3. Consistency condition and existence of solutions

The continuity of motion x(t), v(t) = x’(t) does not imply that the right-hand side of (5) is continuous. However, in this research we are concerned with the existence and mechanical properties of motions affected by higher order derivatives in the right-hand side. With this issue in mind and in order to get clear of other issues and complications caused by possible discontinuities [30], we assume henceforth that the function F*(…) in (5) and all its entries including all higher order derivatives are continuous on  [0, T) T ( (. In this case, equation (5) is mathematically identical, by the Lemma, to the similar equation with all right derivatives, and we assume, for the same reasons, that this equation with all right derivatives has no singular solutions, is solvable for the highest derivative, and in its normal form

x(k)(t) = ( (t, x, x’, …, x(k-1)), t ( [0, T),  k ( 2 (11)

the function ( (.) of (11) satisfies the standard conditions that guarantee the existence, uniqueness and extendibility of solutions over the entire interval [0, T ). Under these regularity conditions, there is a unique solution of (11) which depends on the initial data

x(0) = x0 ,  x’(0) = v0 ,  x’’(0) = p2 , … ,
x(k-1)(0) = pk-1 ,                     (12)

where  x0 , v0  are given and the values  p2 ,…, pk-1  can be considered as control parameters. Since derivatives in F*(.) of (5) are, in fact, left derivatives, one has to assign initial values for p2  and pk = x(k)(0)  in such a way that (5), (11) hold for t = 0 : 
p2 = F*(0, x0 , v0 , p2 ,…, pk-1 ,  pk ),   pk = x(k)(0), 
k ( 2,                            (13)

which we call the consistency condition. If  k = 2  and  x’’-(t) actually enters F*(.), then there are no free control parameters, due to (13), and the same if F*(.) does not contain higher order derivatives which renders the usual 2nd order equation with two initial conditions in (5). If  k > 2,  then there are exactly  k – 2  free control parameters in (12) plus two initial conditions  x0 , v0   for the total of  k initial conditions as required by the theory of  ODEs. For example, if k = 3, then from (13) we compute p2 = h(x0 , v0 , p3), and in (12) we obtain  pk-1 = x’’(0) = p2 = h(x0 , v0 , p3), as required, whereby  p2  is the initial condition for (11) depending on a free parameter p3  which defines also initial data x’’ -(0) = p2 = h(x0 , v0 , p3)    and 
x’’’ -(0) = p3  in (5). If F*(…) of (5) is linear in higher order derivatives, the calculations are simple, see below and other examples in [25, 26]. 

4.4. Effective  forces and the parallelogram law
Equation (11) with initial data (12) and consistency condition (13) has a unique solution in the form

x(t) = ((t, t0 , x0 , v0 , p2 ,…, pk-1 ),   t( [t0 ,T ),
 t0  ( 0,  T (  ( ,                     (14)

x(t0) = ((t0 , .) = x0 ,   dx(t0 )/dt = d((t0 , .)/dt = v0 .
Second derivative of this solution defines the function

f(t, t0 , x0 , v0 , p2 ,…, pk-1 ) = d2( / dt2  = x’’(t), 
 t( [t0 , T) .

(15)

With this function, we can write the equation of motion (5) in the usual form of the second Newton’s law as  x’’ = f(t,…). For this reason, we call   f(t,…)  the effective force. 

Consider (5) as a vector equation. At the initial moment  t = t0 ,  the vector  F*(t0 , .) of (5) defines the vector  F0 = F* (t0 , x0 , v0 , p2 ,…, pk ) due to (12)–(13). If the solution (14) is known, then the vector

F*(t, .) = F*(t, ( , (’,…, ((k)) = x’’(t) = f(t, t0 , x0 , v0 , p2 ,…, pk-1 ),    t( [t0 , T)         (16)

is also specified and equal to the effective force  f(t,…)  for each   t( [t0 , T). 

Imagine that equation (5) is integrated for all possible initial data in (12)–(13). Then we have all possible solutions (14) which create a field of effective forces f(t,…), see (15)–(16), identical to the field  F*(t, x, x’-,x’’-, …, x(k)-) in (5) with respect to its action on a moving body m(t) in (3), (4), (5) The field f(t,…) does not depend on higher order derivatives implying that over this field of effective forces the second Newton’s law has the same form as described by Newton [12] and symbolically specified in (3), (4). This means that effective force (15), (16) embodies "the motive force impressed" mentioned by Newton in his Law II. The original feedback relation (5) represents a force in the sense of Newton only on curves (14), that is, for such higher order derivatives of x(t) that correspond to parametric equations (14). Outside those curves, i.e., with unrelated x, x’-, x’’-, …, x(k)- considered as free parameters, equation (5) does not represent any mechanical motion at all.
This observation means that the inclusion of left higher order derivatives in the right-hand side of (5), i.e., the application of controls with higher order derivatives (which are measured or computed derivatives, thus, automatically left derivatives), does not violate any of Newton’s laws, if we consider the trajectories defined by (12)–(15). With higher order derivatives, relation (5), due to Lemma 4.1 and assumed solvability of (5) with respect to its higher order derivative, introduces a field of effective forces f(t,…) over which a body moves along the curves (14) as if acted upon by the genuine Newton forces. Therefore, the application of the parallelogram law (Corollary I in [12], also called Law IV of  Newton) to the right-hand side of (5) with respect to the vector  F*(.) is incorrect, as indicated in [31]; this is understandable since that right-hand side F*(.) is, in general for k >1, not a force in the sense of Newton, but a feedback liaison of higher order defining certain motion in space for which the vector  F*(t, x, x’-, …, x(k)-) of (5) does not define an acceleration, but the vector 
f(t,…) = d 2( / dt 2 = x’’(t)  defines it.

Fields of effective forces exist also if equation (5) contains terms with natural time delays due to finite speed of information transmittal. Effective forces are recovered after the integration of equation (5) and act along its solutions obtained with consideration of time delays if they are known. If delays are bounded but not exactly known, then the corresponding bands can be evaluated within which the real trajectories are located with effective forces acting along those trajectories. A method of integration in this general case is demonstrated in the following example.
Example, cf. [24]. Consider a physical pendulum consisting of a rod OC of the length l suspended in a hinge at O with a heavy disc of mass M fixed at its center to the end C of the rod. With such pendulums are equipped free standing clocks that can be seen in furniture or antiquity stores. Friction at the hinge is neutralized by a spring or a battery, and a mass of the rod can be ignored. The moments of inertia of the disc are
IC = (or r2dm = (or 2(( r3dr = 0.5Mr 2,
IO = IC + M l 2 = 0.5M(r 2 + 2l 2).

The pendulum oscillates in a plane xOy with the axis Ox  directed straight down  and axis  Oy directed to the right. It is required to derive the equations of motion.

Classical solution. The system has one degree of freedom, and it is convenient to take the angle (  between  Ox  and the rod as the generalized coordinate q = ( . The coordinates of the center of mass are: xc = l cos ( ,  yc = l sin ( . The acting force of gravity  Mg = (X, 0) is directed straight down, so that generalized force
Q =X ( xc /((  = ( Mg l sin ( . Kinetic energy is 
T = 0.5 IO (’ 2, so that ( T /((’ = IO (’, ( T /(( = 0 yielding the Lagrange equations for the case as follows:  

IO (’’ = Q = ( Mg l sin ( , (’’+ 2gl sin ( /(r2+2l2) = 0 ,   ( (0) =(0 ,  (’(0) = 0.               (17)

The equivalent length of the mathematical pendulum with the same period is l*= r2/2l+ l.
Potential function for Q can be taken in the form  P =( Mgl cos ( , so that with the Lagrange function (kinetic potential)
L = T – P = 0.5 IO q 2 + Mgl cos q,  q ( ( ,
we obtain the classical Lagrange equations (17) at left. If we denote p = ( L /( q’ (( IO q’),  then, we have p’ =  dp / dt = ( L /( q = ( Mgl sin q, and can define the Hamiltonian 
H(t, q, p) = pq’ – L = IO q’ 2 ( L = p2/2IO ( Mgl cos q, yielding canonical equations of  the motion:
q’ = ( H /( p = p / IO , p’ = ( ( H /( q = ( Mg l sin q,
q ( ( ,      p ( IO (’,                   (18)

which are equivalent to (17) since 
(’’ (  p’/IO  = ( Mg l sin ( /IO = ( 2g l sin ( /(r2+2l2).
This classical solution which excludes variable reaction in the hinge can be found in most textbooks on theoretical mechanics.

To illustrate the integration of differential equations with the left and delayed higher order derivatives, consider the following equation of the same pendulum in the air affected by strong wind from a ventilator in direction of the negative axis Oy (to the left), which supplies a flow of air generating the force Y = ( (a + b(’ + h(’’+ k(’’’) < 0, cf. [18], Sec. 11, p. 4755, depending on higher order derivatives. The generalized force is
Q* = ( al ( Mg l sin ( (t) – l[ h(’’ -(t( (1) + +k(’’’ -(t( ( 2)] .                 (19)

Note that ( (t) is without delay since it is not a measured and transmitted quantity. With this generalized force and the same kinetic energy, we have the equation:

IO (’’ = Q* = ( al ( Mg l sin ( (t) – l[ h(’’ -(t( (1)+

+  k(’’’ -(t( ( 2)],    t ( 0 .           (20)

In (19), (20), we assume that all three moments of time are within the time interval of the actual motion; out of this interval, the entries are equal zero. Physically, it is clear that always  (1 > 0,  ( 2 > 0; the question is whether we can ignore both or one of them. It is also clear that oscillations will be distorted and not symmetric with respect to the axis Ox.  

Recall that over the length of 100 cm, the information transmittal with the speed of light takes the time ( ( 10-8 sec, whereas the information transmittal with the speed v* ( 10-2 cm/s of the ordered motion of electrons over the same length of 100 cm would take (* ( 10 4 sec = 167 min =2.8 hour, which makes quite a difference, see Section 3. For information transmittal over 1 cm, the corresponding delays are 10-10 sec and 100 sec. For different delays (1 , ( 2  within [10-10, 1] sec, different dynamics can be obtained for the same system in (20). Equating left and right derivatives, we consider the following cases.

Case 1. If (2 ( 10-8 sec, small, and (1 > (2  then differential equation (20) is changing its order and right-hand sides over different intervals, and when it is of the third order, the initial conditions in (17) are insufficient to define its unique solution. At t = 0, derivatives at right in (20) are not yet in action, so over [0, (2) we have in (20) the same equation as in (17) with the same initial conditions, yielding the values 
(((2) ( (0, (’((2) ( 0, (’’((2) ( ( (al + Mgl sin(0 )/IO . 
At  t = (2, this value (’’((2) presents initial condition for equation (20) where the second derivative at right is not yet in action. This assures the continuity of the motion over [0, (1) but with dynamics of the third order over [(2 , (1)  since the third derivative in (20) comes into play and will overtake the motion for small (2 ( 10-8. At the moment t* = (1, the term h(’’(t ( (1) at right in (20) comes into play, so we have to replace the value (’’((1) by the new initial condition at t = (1 according to the equation 
IO(’’((1) = ( al ( Mgl sin(((1) – l[h(’’(0)+ k(’’’((1((2)], see (20), which is the consistency condition (13) for the case, yielding 
(’’((1) = ( (al + Mgl sin(((1)) / IO – l[( h(al + +Mgl sin(0) /IO + k(’’’((1((2)] /IO .
Now, for t ( (1   the motion is defined by the third order differential equation, and with the approximation (2 ( 0, this equation can be written as ordinary DDE:
l k (’’’(t) =
= ( IO (’’(t) (  al ( Mg l sin ( (t) – l h(’’(t((1), 
 t ( (1
with  (((1), (’((1) defined as end-point values of the previous segment of ((t) over  [0, (1 ] and  (’’((1) given by the consistency condition.

Case 2. If  (1 ( 10-8 sec, small, but (2 is relatively large, then in (20) we have, in fact, the second order differential equation with discontinuity in the right-hand side. Indeed, until after t* > (2 the third derivative at right of (20) is not in action, thus, setting (1 ( 0, we get from (20) the equation (IO + lh)(’’(t) =( al ( Mgl( (t), different from the equations in (17), due to seemingly heavier disc, but with the same initial conditions. This equation exists until t* = (2 at which moment the third derivative in (20) comes into play, changing the right-hand side for t > (2 as follows:

IO (’’ =( al ( Mg l sin ( (t) – l[ h(’’(t( (1) +
+k(’’’(t( ( 2)] ,        t > (2 .          (21)

This is the same equation as (20) with all right derivatives. However, the third derivative at right does not project the motion as it did in Case 1, due to a greater delay  (2 > (1 . It adds an additional force (f(t) = ( lk(’’’(t((2)  depending on the rate of change of actually realized values of past acceleration  (’’(t((2)  for t > (2  assuring softer rate of change in acceleration which is good for a vehicle and for the people in the vehicle, if we consider in place of the pendulum a swing with people at entertainment centers.

N.B. In the theory of DDEs, the functions with delays in the right-hand sides must be defined prior to the start of the motion. For example, to define a unique solution in (20) for t ( 0, cf. (15), the theory requires to define Q*(.) over the prior segment [-( , 0] where ( = max ((1 , (2).  With time delays due to information transmittal, delayed terms in forces Q*(.) cannot be “defined” on prior intervals because they physically do not exist in those time intervals. Setting them at zero may bring contradictions. Indeed, if (1 < (2 and we set  
(’’ - = (’’’ -( 0  over  [0, (1) with ( (0) = (0 > 0, then by continuity (Lemma 4.1), we have also (’’( 0  at left in (20), so that at t = 0 we get in (20): 0 =( al ( Mg l sin (0 < 0, an absurdity. For these reasons, we did not mention prior segments of definition for delayed terms which can be dealt with as they come into action.

Case 3. The absence of time uncertainty in mathematical descriptions of motion may lead to substantial errors, especially for small particles at high velocities. In deterministic consideration, this can be seen on example of a linear harmonic oscillator by comparison of the magnitude of its period with the order of natural time delays. Suppose that gravitation acts on the electron in the same way as on a metal pendulum and that it is added to other forces according to the parallelogram rule. Then we can imagine that small oscillations are superimposed on the rotational motion of an electron around the nucleus which would distort its uniform rotation. In the oscillatory part of the motion along the bottom arc 2(0 ,  we can consider the electron as a point-wise mass, so that the second equation in (17) with r = 0, for small (0  takes the form (’’ + g( /l = 0 , irrespective of  the mass of  the electron, and the solution is 
(  = (0 sin ( t,  where ( 2 = g / l,
 with the period  T = 2((l/g)0.5. If we take 
l = a0 = 0.529 ( 10-8 cm
which is the radius of the first (innermost) Bohr orbit in the hydrogen atom (Bohr radius [32, p.7]), then we have T = 1.460 ( 10 -5 sec. This is just at the middle of the time uncertainty segment for delays (1 , ( 2  within [1010, 1] sec considered above, so that model (17) is inapplicable to the study of harmonic oscillations of  the electron in the hydrogen atom.

In the microcosm region (on a scale from 10-6 to 10-13 cm, cf. the Bohr radius a0), the probabilistic approach is applied according to which the intensity of the probability wave (de Broglie wave of ( = h / mv associated with a particle of mass m moving with velocity v; h is Planck’s constant) is a measure of the probability that the particle will be found at a given place in space at a given instant of time. The probability p(x, y, z, t) of finding a particle in the volume dV = dxdydz is  p(x, y, z, t) = (( (x, y, z, t)( 2  dV where ( (x, y, z, t)  is the wave function which is the solution of  the Schrödinger wave equation.
Now, suppose that ( (.) is known and the values x, y, z, dV are fixed (measured) at an instant  t,  so  p(x, y, z, t)  is computed and observed (known), though not at time t but at some moment  t + (, since computation and transmittal of information takes time ( >0. At that moment, p(x, y, z, t+() is not yet transmitted, thus, unknown. What is known at any moment t is  p(x, y, z, t-(). The exact current value  p(x, y, z, t) is not known due to time delay ( >0 in information transmittal and to Heisenberg’s uncertainty in coordinate measurements. With high velocities of electrons approaching the speed of light (relativistic quantum mechanics), the time and coordinate errors grow much larger. It means that the microcosm given in measurements and computations is not the same as in reality. The practical effects, however, need not be all too different. In steady oscillations, a time delay of a whole number of periods does not change the picture; in contrast, a split second computational delay in anti-missile system may be catastrophic.

Of course, the probabilistic approach in quantum mechanics mitigates time uncertainty problems by shifting them onto probability measure; however, they still remain and persist on that measure. Further abatement is possible by integration of probabilities over time intervals greater than time delays [33]. In deterministic studies, time delays should be taken into account, when possible, especially if computations are involved in experiments, or particles move in a field of controlled forces, in which cases time delays due to information transmittal really take place.
5. Conclusions
This paper presents the causal approach to natural sciences and mathematics based on the notion of information and action transmittal by signals propagating at finite velocities in the course of time which is considered as a positively oriented ever increasing natural parameter. On this basis, some physical aspects in mathematics and dynamical systems, engineering and technology are considered which should be taken into account in theory, experiments and technological innovations.
1. The Universe is composed not only of the matter and motion, as usually defined, but includes also signals of different nature, propagating at finite  velocities.

2. There are no instantaneous actions in Nature. It does not mean that we cannot consider some actions as instantaneous, yielding an acceptable approximation to reality. 
3. Some basic concepts that include causality, finite velocity of the action transmittal and the uncertainty of real time can be considered as the general laws of Nature known from everyday experience. They admit approximations that can be used in practice to simplify certain things.
4. The ever present time uncertainty is very important in application to some notions and problems, such as stress relief phenomena, synchronization of clocks, high speed computations, measurement of the speed of meteors and asteroids, and of small particles at high velocities in particle accelerators and colliders.
5. The time orientation and causality physically invalidate the right time derivatives normally used in mathematics. Derivatives that are included in the right-hand sides of equations of motion must be left (or delayed) derivatives which preserve the causality of motions affected by external forces and assure the measurability of such time derivatives.
6. Non-causal mathematical theories based on the Newton-Leibniz right time derivatives when applied to physical problems present abstract models of some frozen presumptive processes which may be considered as approximations, but do not exist in reality. 
7. The studies in astrophysics must take into account the causality and natural time uncertainty, even with high precision of experimental installations used for observation.
8. The guidance and control systems with high security requirements, such as nuclear and chemical plants, the autopilot systems in aviation, spacecrafts, meteorite interceptors should be equipped with the acceleration assisted controls based on the left higher order derivatives continuously measured in motion or process evolution. 
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